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SUMMARY

Introduction to Artificial Neural Networks

Applications:

 Classification of diversion scenarios for safeguards applications
« Anomaly detection in camera data for IAEA surveillance

 Prediction of safety parameters for canister loading optimization

Advantages/Disadvantages of using ANN

For the future




ARTIFICIAL INTELLIGENCE vs MACHINE LEARNING vs ARTIFICIAL NEURAL
NETWORKS vs DEEP LEARNING ?

Do you know the difference?
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ARTIFICAL NEURAL NETWORKS

* Inspiration from the human
brain's structure.

Hidden 1

Input 1
Hidden 2\

Input 2 Output 1
Hidden 3/

Input 3
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Input layer Hidden layer Output layer eu
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DEEP LEARNING .

Hidden 1 Hidden 5
Input 1
» Deep learning is a category of ANN
with several hidden layers. Hidden 2 Hidden 6\
Input 2 Output 1
« Can handl [ bl .
e more complex problems i dan's idden 7/'
* Needed for image recognition Input 3
(Convolutional Neural Network). Hidden 4 Hidden 8
Input layer Hidden layers Output layer
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ANN APPLICATIONS

The ANN applications are usually divided into two types:

1) CLASSIFICATION 2) REGRESSION

Classify into different classes Try to predict a continuous value
(expected/abnormal)

4
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DIFFERENT APPLICATIONS

 Classification of diversion scenarios for safeguards applications

* Al-dbissi et al. Identification of diversions in spent PWR fuel assemblies by PDET signatures using Artificial Neural
Networks (ANNSs). Annals of nuclear energy (2023).

« Anomaly detection in camera data for IAEA surveillance

* Smith et al. A Deep Learning Workflow for Spatio-Temporal Anomaly Detection in NGSS Camera Data. Proceedings from
INMM & ESARDA Joint Virtual Annual Meeting (2021).

* Prediction of safety parameters before encapsulation

» Solans et al. Optimisation of used nuclear fuel canister loading using a neural network and genetic algorithm. Neural
Computing and Applications (2021).

e Current EURAD work
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APPLICATION 1:
CLASSIFICATION OF DIVERSION SCENARIOS FOR
SAFEGUARDS APPLICATIONS

Identification of diversions in spent PWR fuel assemblies by PDET signatures using Artificial
Neural Networks (ANNs). Al-dbissi et al. Annals of nuclear energy (2023).
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SAFEGUARDS

* The aim of safeguards:

* No nuclear material missing from SNF

 Detection of partial defect: Search for missing or replaced fuel
pins in SNF

 After encapsulation, any verifications will be
challenging/impossible

(CHUGKLES) MMM.

eu
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PARTIAL DEFECT TESTER (PDET)

* Inspection technique developed by Lawrence Livermore
National Laboratory

« Gamma and neutron detector inserted in the Guide
tubes of PWR SNFs

Figure from Al-dbissi et al.
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DATA AND MODEL

Intact fuel assembly
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CLASSIFICATION FOR PARTIAL DEFECT TESTER (PDET) FOR SAFEGUARDS

APPLICATIONS

Intact fuel assembly
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Figure from Al-dbissi et al.
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CLASSIFICATION AND RESULTS

* ANN: Percentage of replaced fuel pins

 Classification problem (7 class label)

Percentage of replaced pins (x) Class label
x =10 0
x < 10% 1
* Result: 10% < x < 20% 2
« Accuracy 96.5 % 20% < x < 30% 3
» Highest misclassification occurs between igi <x= 4?? :
class 0 (intact SNF) and class 1 (<10%) > < X 0%
x > 50% 6

eurad,
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CONCLUSION

* Possible improvements:

* Increase dataset

» Test on experimental data

 This application shows that ANN can be used to help detecting replaced fuel pins for
safeguards applications before encapsulation

« Identification of diversions in spent PWR fuel assemblies by PDET signatures using Artificial Neural Networks
(ANNSs). Al-dbissi et al. Annals of nuclear energy (2023).
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APPLICATION 2:
ANOMALY DETECTION IN CAMERA DATA FOR IAEA
SURVEILLANCE

A Deep Learning Workflow for Spatio-Temporal Anomaly Detection in NGSS Camera Data.
Smith et al. Proceedings from INMM & ESARDA Joint Virtual Annual Meeting (2021).
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IAEA

* |AEA has over 1400 surveillance cameras (2016)
« Cameras record all activity
* Only basic motion detection algorithm

* IAEA employees need to review all surveillance images

» Goal: Improve inspector efficiency by only showing
irregular activity

Image generated by V.Solans with DALL-E 3
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MODEL

* Input: previous frames from the camera
* Output: prediction of the next frame

* Goal: highlight any difference between the predicted
and the actual frame

 Tested at Sandia National Laboratories’ Gamma
Irradiation Facility

Image generated by V.Solans with DALL-E 3

eu

20




s |

SANDIA NATIONAL LABORATORIES' GAMMA IRRADIATION FACILITY

Predicted Frame Actual Frame

Jg— - ey
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Figure from Smith et al. 21
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SANDIA NATIONAL LABORATORIES' GAMMA IRRADIATION FACILITY

Predicted Frame Actual Frame Difference

ey

Figure from Smith et al. 22
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ACTIVITIES AT THE FACILITY

Real case test at the facility:

» Used test-container to represent a SNF
container

* Leaving the drying area is normal activity

» Entering the drying area is not a normal
activity

» Background activity: container can be
lifted using a crane (normal activity)

Figure from Smith et al.

Normal activity
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ABNORMAL ACTIVITY
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CONCLUSION

109

» This ANN is able to identify abnormal activity in
time and space

» Challenges:

« Would need a different training for each camera

» Extremely long temporal relationship (decades)

 Gain in time would be significant for IAEA
inspectors

Figure from Smith et al. 30




APPLICATION 3:
PREDICTION OF SAFETY PARAMETERS BEFORE
ENCAPSULATION

Optimisation of used nuclear fuel canister loading using a neural network and genetic
algorithm. Solans et al. Neural Computing and Applications (2021).

Current EURAD work

eu.
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION

Cladding tube Spent nuclear fuel Bentonite clay Surface portion of final repository

)

Fuel pellet of Copper canister Crystalline Underground portion of
uranium dioxide with cast iron insert bedrock final repository

eurad,
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION

Encapsulation of SNFs in canisters:

- Some safety parameters (per canister):

* Criticality-safety parameter

» Decay heat

* Place the SNF in a canister using a pre-
established canister loading plan

eu
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION

* PART 1: Use ANN to predict k., from radionuclide concentration
(for canister optimization strategies)

* PART 2: Use ANN to predict decay heat from experimental
measurements (for SNF verification)

eu.
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION

* More than 50 000 SNFs are expected
for the final repository in Sweden (base
scenario)

* Up to 4 PWR or 12 BWR SNFs per
canister

* Need fast computation of the canister’s
k. to evaluate different loading
combinations
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PREDICTION OF K, FROM RADIONUCLIDE CONCENTRATION

* Canister k. is calculated using Serpent (Monte-Carlo code)

* ~1h calculation per canister using Serpent

* Goal: Use ANN as a surrogate model for Serpent in the canister loading optimization
algorithm

eu
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PREDICTION OF K, FROM RADIONUCLIDE CONCENTRATION

Model:

 Input: Nuclide concentrations per pin for each SNF

* Output: Canister kg

Data:

o 212 different PWR SNFs
« 46 746 canisters filled with 4 SNFs (randomly loaded)
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PREDICTION OF K, FROM RADIONUCLIDE CONCENTRATION

Test: R2=0.999896

1.05 .
1 L
=
* Results (ANN-Serpent): Z
o 095
e Std= 55+ 2 pcm, g
« Mean=0+ 1 pcm 2 09
* Uncertainty from Serpent is 20 pcm \xj—’
5 0.85
o
5
O
0.8
#
e
0.75 ‘ ‘ ‘ ‘ ‘
0.75 0.8 0.85 0.9 0.95 1 1.05

Target (keff from Serpent)
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PREDICTION OF K, FROM RADIONUCLIDE CONCENTRATION

* It allows to calculate the canister k_ with various combinations, including the same SNFs but
with different axial rotations
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WHY ARE WE USING AN ANN?

K.+ and DH can be calculated by state-of-the-art codes such as
SIMULATE/Serpent. So why it is interesting to use an ANN?

eu.
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WHY ARE WE USING AN ANN?

K.+ and DH can be calculated by state-of-the-art codes such as
SIMULATE/Serpent. So why it is interesting to use an ANN?

It can be useful when fast estimation is needed, for instance for canister optimization

eu.
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CANISTER LOADING OPTIMIZATION

 Canister loading optimization using a genetic algorithm (ML but not ANN)

* Axial rotation of SNFs to minimize k. is included

» Find an optimized loading for 212 PWR assembilies into the 53 canisters

* k.4 computed with the neural network
* DH of each SNF is known

« Goals:

* Minimize the maximum k. and DH

» Homogeneous distributions for k. and DH

eurad,
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CANISTER LOADING OPTIMIZATION

0.95

_—— -

_———

0.85

I Max/Min I Max/Min
I Mean I Mean
H B Mean + std H B Mean + std
I Safety limit 0.8 I Safety limit
10° 10’ 102 108 104 10° 10' 10° 10° 10*
lterations lterations

Validation with Serpent: Mean difference is 30 pcm.

Minimum number of canisters reached (53 canisters)
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CANISTER LOADING OPTIMIZATION

« Simple test with only 212 PWR assemblies

« The algorithm has 104 iterations, where the k. and DH need to be calculated for each of the 53 canisters.

* There is a need to calculate the k_ of the canister in a fast way.

* In particular it becomes interesting when different scenarios, (therefore different) canister
loading optimization is needed

 Reference scenario of the country

* Increase life time of the NPPs

» Mixed canister are allowed or not (MOX with UO,, old and newly discharged SNFs, bended SNFs)
« With SMRs SNFs

eurad,
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION

* PART 2: Use ANN to prediction decay heat from experimental
measurements (for SNF verification)

eu.
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PREDICTION DECAY HEAT FROM EXPERIMENTAL MEASUREMENTS

Each SNF needs to be experimentally measured before final encapsulation and disposal to be in
agreement with international regulations.

Decay heat can be obtained via calorimetric measurements

Model:

* Input: gamma and neutron measurements

« QOutput: Decay heat of the SNF

eu
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RESULTS

] mmm th_'.'

s8¢

 Train on simulated data

OH from simulated data [W]

* Why? More data, good coverage B0 4

&na |

41500

+ Tested on simulated and experimental data using a 200 |
calibrated model 1

D 00 400 600 B00 1000 1200 1400 1600
[ predicted by the ML medel [W]

Simulated test set 1.2
SKB-50 3.7
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WHY ARE WE USING AN ANN ?

* No direct equation between gamma and neutron measurements to the decay heat.

* The simulated library is used to map the space and ML is used to interpolate between
simulated points that have been obtained using Serpent.

» Can easily be extended for more inputs that will represents the different detectors used at
encapsulation.
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SYNTHESIS: ANN PROS, CONS, AND FORWARD VISIONS

eu.
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ADVANTAGES CHALLENGES

Capability to handle large datasets (IAEA) Need for large amount of data

Results depend on the quality of the training
data

Ability to learn complex patterns from data

Adaptability to various data types (security
camera, neutron/gamma measurements)

Cannot extrapolate

The model doesn't know physics (data-
Potential for automation and optimization driven)

r
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IN THE FUTURE?

* Nuclear waste management is a very long process over several decades, and the technology
around it will also evolve.

* Have you heard about Chat-GPT? How it is related to ANN?

 Itis a language model where you can ask questions. (Warning: the model can give inaccurate information)

* GPT (Generative Pre-trained Transformer), Transformer Neural network (part of the deep learning)

eurad,
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CHAT-GPT 4

What is the decay heat limit at encapsulation in Switzerland?

@5, Finished browsing

The decay heat limit at encapsulation in Switzerland has been mentioned as 1.5 kW in a

study, although it's noted that this limit could change based on various engineered barriers

involved in the process’.
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IN THE FUTURE?

Must think about:

* How research articles/ waste management organisation reports and websites are integrated in the
training of these Al models?

* How to make our research work readable/found by Al?
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CONCLUSION

ANN and ML in general, can make predictions or
combine different information.

Can be used for a large range of applications.

ANN usually requires large amount of data.

Use of Al will most probably increase in our daily life in
the future, as well as in nuclear waste management.

Thank you for listening
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