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BEYOND CONVENTIONAL METHODS: 
THE ROLE OF ARTIFICIAL NEURAL 
NETWORKS IN NUCLEAR WASTE 
MANAGEMENT
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SUMMARY

• Introduction to Artificial Neural Networks

• Applications:

• Classification of diversion scenarios for safeguards applications

• Anomaly detection in camera data for IAEA surveillance

• Prediction of safety parameters for canister loading optimization

• Advantages/Disadvantages of using ANN

• For the future
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ARTIFICIAL INTELLIGENCE vs MACHINE LEARNING vs ARTIFICIAL NEURAL 
NETWORKS vs DEEP LEARNING ?
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Do you know the difference?



ARTIFICIAL INTELLIGENCE vs MACHINE LEARNING vs ARTIFICIAL NEURAL 
NETWORKS vs DEEP LEARNING ?
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Figure from LinkedIn (https://www.linkedin.com/pulse/what-artificial-intelligence-without-machine-learning-claudia-pohlink/)
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ARTIFICAL NEURAL NETWORKS

• Inspiration from the human 

brain's structure.
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DEEP LEARNING

• Deep learning is a category of ANN 

with several hidden layers.

• Can handle more complex problems.

• Needed for image recognition 

(Convolutional Neural Network).
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Input layer Hidden layers Output layer



ANN APPLICATIONS

1) CLASSIFICATION

Classify into different classes 

(expected/abnormal)
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2) REGRESSION

Try to predict a continuous value 

The ANN applications are usually divided into two types:



DIFFERENT APPLICATIONS

• Classification of diversion scenarios for safeguards applications

• Al-dbissi et al. Identification of diversions in spent PWR fuel assemblies by PDET signatures using Artificial Neural 

Networks (ANNs). Annals of nuclear energy (2023).

• Anomaly detection in camera data for IAEA surveillance

• Smith et al. A Deep Learning Workflow for Spatio-Temporal Anomaly Detection in NGSS Camera Data. Proceedings from 

INMM & ESARDA Joint Virtual Annual Meeting (2021).

• Prediction of safety parameters before encapsulation

• Solans et al. Optimisation of used nuclear fuel canister loading using a neural network and genetic algorithm. Neural 

Computing and Applications (2021).

• Current EURAD work
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APPLICATION 1:
CLASSIFICATION OF DIVERSION SCENARIOS FOR 
SAFEGUARDS APPLICATIONS

Identification of diversions in spent PWR fuel assemblies by PDET signatures using Artificial 
Neural Networks (ANNs). Al-dbissi et al. Annals of nuclear energy (2023).
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SAFEGUARDS

• The aim of safeguards:

• No nuclear material missing from SNF

• Detection of partial defect: Search for missing or replaced fuel 

pins in SNF

• After encapsulation, any verifications will be 

challenging/impossible
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PARTIAL DEFECT TESTER (PDET)

• Inspection technique developed by Lawrence Livermore 

National Laboratory

• Gamma and neutron detector inserted in the Guide 

tubes of PWR SNFs

13Figure from Al-dbissi et al.



DATA AND MODEL

• Work done only on simulated data

• Data:

• Simulated PWR

• 25 Guide tubes per SNF

• Intact SNFs + different diversion scenarios

• Model:

• Input: 25 gamma + 25 neutron detection rates per SNF

• Output: Classification in percentage of replaced fuel pins

14Figure from Al-dbissi et al.



CLASSIFICATION FOR PARTIAL DEFECT TESTER (PDET) FOR SAFEGUARDS 
APPLICATIONS

15Figure from Al-dbissi et al.



CLASSIFICATION AND RESULTS

• ANN: Percentage of replaced fuel pins

• Classification problem (7 class label)

• Result:

• Accuracy 96.5 %

• Highest misclassification occurs between 

class 0 (intact SNF) and class 1 (<10%)
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CONCLUSION

• Possible improvements:

• Increase dataset

• Test on experimental data

• This application shows that ANN can be used to help detecting replaced fuel pins for 

safeguards applications before encapsulation

• Identification of diversions in spent PWR fuel assemblies by PDET signatures using Artificial Neural Networks 

(ANNs). Al-dbissi et al. Annals of nuclear energy (2023).
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APPLICATION 2:
ANOMALY DETECTION IN CAMERA DATA FOR IAEA 
SURVEILLANCE

A Deep Learning Workflow for Spatio-Temporal Anomaly Detection in NGSS Camera Data. 

Smith et al. Proceedings from INMM & ESARDA Joint Virtual Annual Meeting (2021). 
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IAEA

• IAEA has over 1400 surveillance cameras (2016)

• Cameras record all activity 

• Only basic motion detection algorithm

• IAEA employees need to review all surveillance images

• Goal: Improve inspector efficiency by only showing 

irregular activity
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Image generated by V.Solans with DALL-E 3 



MODEL

• Input: previous frames from the camera

• Output: prediction of the next frame

• Goal: highlight any difference between the predicted 

and the actual frame

• Tested at Sandia National Laboratories’ Gamma 

Irradiation Facility
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Image generated by V.Solans with DALL-E 3 



SANDIA NATIONAL LABORATORIES’ GAMMA IRRADIATION FACILITY

21Figure from Smith et al.



SANDIA NATIONAL LABORATORIES’ GAMMA IRRADIATION FACILITY

22Figure from Smith et al.



ACTIVITIES AT THE FACILITY
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Real case test at the facility:

• Used test-container to represent a SNF 

container

• Leaving the drying area is normal activity

• Entering the drying area is not a normal 

activity

• Background activity: container can be 

lifted using a crane (normal activity)

Normal activity

Figure from Smith et al.
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NORMAL ACTIVITY
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Normal activity

Figure from Smith et al.



ABNORMAL ACTIVITY
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Abnormal activity

Figure from Smith et al.



CONCLUSION

• This ANN is able to identify abnormal activity in 

time and space

• Challenges:

• Would need a different training for each camera

• Extremely long temporal relationship (decades)

• Gain in time would be significant for IAEA 

inspectors

30Figure from Smith et al.



APPLICATION 3:
PREDICTION OF SAFETY PARAMETERS BEFORE 
ENCAPSULATION

Optimisation of used nuclear fuel canister loading using a neural network and genetic 

algorithm. Solans et al. Neural Computing and Applications (2021).

Current EURAD work
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION

Encapsulation of SNFs in canisters:

• Some safety parameters (per canister):

• Criticality-safety parameter

• Decay heat

• Place the SNF in a canister using a pre-

established canister loading plan
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION

• PART 1: Use ANN to predict keff from radionuclide concentration 

(for canister optimization strategies)

• PART 2: Use ANN to predict decay heat from experimental 

measurements (for SNF verification)
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION
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• More than 50 000 SNFs are expected 

for the final repository in Sweden (base 

scenario)

• Up to 4 PWR or 12 BWR SNFs per 

canister

• Need fast computation of the canister’s 

keff to evaluate different loading 

combinations



• Canister keff is calculated using Serpent (Monte-Carlo code)

• ~1h calculation per canister using Serpent

• Goal: Use ANN as a surrogate model for Serpent in the canister loading optimization 

algorithm
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PREDICTION OF KEFF FROM RADIONUCLIDE CONCENTRATION



PREDICTION OF KEFF FROM RADIONUCLIDE CONCENTRATION

• Model:

• Input: Nuclide concentrations per pin for each SNF

• Output: Canister keff

• Data:

• 212 different PWR SNFs

• 46 746 canisters filled with 4 SNFs (randomly loaded)
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keff = 0.95533 



• Results (ANN-Serpent):

• Std= 55 ± 2 pcm,

• Mean= 0 ± 1 pcm

• Uncertainty from Serpent is 20 pcm
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PREDICTION OF KEFF FROM RADIONUCLIDE CONCENTRATION

• It allows to calculate the canister keff with various combinations, including the same SNFs but 

with different axial rotations
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keff = 0.95533 keff = 0.94803 



WHY ARE WE USING AN ANN?

Keff and DH can be calculated by state-of-the-art codes such as 

SIMULATE/Serpent. So why it is interesting to use an ANN?

40



WHY ARE WE USING AN ANN?

Keff and DH can be calculated by state-of-the-art codes such as 

SIMULATE/Serpent. So why it is interesting to use an ANN?

It can be useful when fast estimation is needed, for instance for canister optimization

41



CANISTER LOADING OPTIMIZATION

• Canister loading optimization using a genetic algorithm (ML but not ANN)

• Axial rotation of SNFs to minimize keff is included

• Find an optimized loading for 212 PWR assemblies into the 53 canisters

• keff computed with the neural network

• DH of each SNF is known

• Goals:

• Minimize the maximum keff and DH

• Homogeneous distributions for keff and DH
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CANISTER LOADING OPTIMIZATION

43

Validation with Serpent: Mean difference is 30 pcm.

Minimum number of canisters reached (53 canisters)



CANISTER LOADING OPTIMIZATION

• Simple test with only 212 PWR assemblies 

• The algorithm has 104 iterations, where the keff and DH need to be calculated for each of the 53 canisters.

• There is a need to calculate the keff of the canister in a fast way.

• In particular it becomes interesting when different scenarios, (therefore different) canister 

loading optimization is needed

• Reference scenario of the country

• Increase life time of the NPPs

• Mixed canister are allowed or not (MOX with UO2, old and newly discharged SNFs, bended SNFs)

• With SMRs SNFs 
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PREDICTION OF SAFETY PARAMETERS FOR CANISTER LOADING OPTIMIZATION

• PART 1: Use ANN to predict keff from radionuclide concentration 

(for canister optimization strategies)

• PART 2: Use ANN to prediction decay heat from experimental 

measurements (for SNF verification)
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PREDICTION DECAY HEAT FROM EXPERIMENTAL MEASUREMENTS

Each SNF needs to be experimentally measured before final encapsulation and disposal to be in 

agreement with international regulations.

Decay heat can be obtained via calorimetric measurements

Model:

• Input: gamma and neutron measurements

• Output: Decay heat of the SNF
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RESULTS

• Train on simulated data

• Why? More data, good coverage

• Tested on simulated and experimental data using a 

calibrated model
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Relative error [%]

Simulated test set 1.2

SKB-50 3.7



WHY ARE WE USING AN ANN ?

• No direct equation between gamma and neutron measurements to the decay heat.

• The simulated library is used to map the space and ML is used to interpolate between 

simulated points that have been obtained using Serpent. 

• Can easily be extended for more inputs that will represents the different detectors used at 

encapsulation.
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SYNTHESIS: ANN PROS, CONS, AND FORWARD VISIONS
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ADVANTAGES CHALLENGES

• Capability to handle large datasets (IAEA)

• Ability to learn complex patterns from data

• Adaptability to various data types (security 

camera, neutron/gamma measurements)

• Potential for automation and optimization
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• Need for large amount of data

• Results depend on the quality of the training 
data

• Cannot extrapolate

• The model doesn't know physics (data-
driven)



IN THE FUTURE?

• Nuclear waste management is a very long process over several decades, and the technology 

around it will also evolve.

• Have you heard about Chat-GPT? How it is related to ANN?

• It is a language model where you can ask questions. (Warning: the model can give inaccurate information)

• GPT (Generative Pre-trained Transformer), Transformer Neural network (part of the deep learning)
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CHAT-GPT 4

52



CHAT-GPT 4
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IN THE FUTURE?

Must think about:

• How research articles/ waste management organisation reports and websites are integrated in the 

training of these AI models?

• How to make our research work readable/found by AI?
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CONCLUSION

• ANN and ML in general, can make predictions or 

combine different information.

• Can be used for a large range of applications.

• ANN usually requires large amount of data.

• Use of AI will most probably increase in our daily life in 

the future, as well as in nuclear waste management.

55

Image generated by V.Solans with DALL-E 3 

Thank you for listening
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